

1

Developing Reception Voice Assistant

and Visitors Analytics using (Azure SQL

,Power BI, Active Directory ,Azure Web App & Docker)

Problem statement –

Traditional reception systems lack personalized and engaging experiences for

visitors entering establishments such as malls, hospitals, and restaurants.

Additionally, there is a need for efficient tracking and analysis of visitor data to

enhance customer service and make informed business decisions..

Proposed Solution: The proposed solution is a web application that utilizes

user input to generate a personalized welcome message with the visitor's

name. The application will capture visitor details, such as name, arrival time,

and purpose of visit, and store them in a database for tracking and analysis

purposes. It will also provide features to generate reports, visualize visitor

data, and extract insights to improve business operations.

Solution Architecture Diagram :-

2

Let’s look into technical details and the Implementation of the

solution:

You need the following software/ Azure Account, please find

Following are the Azure service used to create the solution:

• Storage Account

• WebApp service

• Application insight

• Azure Active Directory (for security)

• SQL Database

• Power BI Desktop

• Docker

Azure Account:- get an azure account by clicking on the

following link

https://azure.microsoft.com/en-us/free/

There is free credit for students and 200 USD credit if you want

to get started with Azure

https://azure.microsoft.com/en-us/free/students/

Visual Studio 2019 Community

https://visualstudio.microsoft.com/downloads/

The community edition is free for students and open-source

contributors for non-commercial use.

Visual Studio Code (Optional if you have Visual Studio 2019 for

Azure Development)

https://code.visualstudio.com/download

PROJECT DEPLOYED LINK:

https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/students/
https://visualstudio.microsoft.com/downloads/
https://code.visualstudio.com/download

3

https://receptionistvoice.azurewebsites.net/

Github Link:

https://github.com/mohdp6728/blogathonproject

Docker Link:

https://hub.docker.com/repository/docker/mohd6728/docker

Required Packages :
Azure identiy

Playsound and GTTs- for voice libraries

Technologies : Python FLASK

Driver code :

from azure.identity import DefaultAzureCredential

from flask import Flask, render_template, request

import pyodbc

from gtts import gTTS

import os

import subprocess

from azure.identity import DefaultAzureCredential

from azure.keyvault.secrets import SecretClient

app = Flask(__name__)

Connect to Azure SQL DB

server = 'boomlet.database.windows.net'

database = 'boomlet'

username = 'maddy'

password = 'Viratkohli18'

password = 'Paneer@1234'

driver = '{ODBC Driver 17 for SQL Server}'

Use Azure AD authentication

credential = DefaultAzureCredential()

cnxn =

pyodbc.connect(f'DRIVER={driver};SERVER={server};DATABASE={database};UID={user

name};PWD={password}')

https://receptionistvoice.azurewebsites.net/
https://github.com/mohdp6728/blogathonproject
https://hub.docker.com/repository/docker/mohd6728/docker

4

cnxn =

pyodbc.connect(f'DRIVER={driver};SERVER={server};DATABASE={database};Authentic

ation=ActiveDirectoryPassword;UID=maddy@trentboult446gmail.onmicrosoft.com;PWD

={password}')

@app.route('/', methods=['GET', 'POST'])

def index():

 if request.method == 'POST':

 return submit()

 return render_template('index.html')

@app.route('/submit', methods=['POST'])

def submit():

 full_name = request.form.get('full_name')

 purpose = request.form.get('purpose')

 number = request.form.get('number')

 welcome_message = f"Welcome {full_name} to BoomLet Media"

 # Insert user details into boomlet table

 cursor = cnxn.cursor()

 insert_query = f"INSERT INTO users (full_name, purpose, number) VALUES

('{full_name}', '{purpose}', '{number}')"

 cursor.execute(insert_query)

 cnxn.commit()

 # Generate audio file using gTTS

 tts = gTTS(welcome_message)

 tts.save(f"static/{full_name}.mp3")

 return render_template('success.html', full_name=full_name,

purpose=purpose, number=number)

@app.route('/database', methods=['GET'])

def database():

 # Select all records from boomlet table

 cursor = cnxn.cursor()

 select_query = "SELECT * FROM users"

 cursor.execute(select_query)

 rows = cursor.fetchall()

 return render_template('database.html', rows=rows)

if __name__ == '__main__':

 app.run(host='0.0.0.0', port=5000, debug=False)

5

Steps to Create and Connect Azure WebApp and

Docker:

Step 1: Create an WebApp
Azure Web App is a fully managed platform for hosting and deploying web applications. It

provides a scalable and secure environment to run your web applications without worrying

about infrastructure management.

NOTE : We can either Deploy our app by using Docker or Github Actions here we

choose Docker

Next we configure the docker Settings like startup command and source url

6

Step 2: Creating Azure SQL DB and Azure Active

Directory

SQL DB with Azure Active Directory integration allows you to leverage Azure Active

Directory for authentication and authorization in your SQL database. It provides

enhanced security and centralized access control for your database, allowing you to

manage user identities and permissions more effectively.

Query to schema :

CREATE TABLE [dbo].[users](

 [id] [int] IDENTITY(1,1) NOT NULL,

 [full_name] [varchar](50) NULL,

 [purpose] [varchar](100) NULL,

 [number] [varchar](20) NULL,

 [gender] [varchar](10) NULL,

 [date] [date] NULL,

 [time] [time] NULL

)

SQL SERVER:

7

Firewall rules

Allow Azure services and resources to access this server

Yes

SQL DB:

8

STEP 3 : Azure Active Directory Configuration:

In the Azure portal, go to "Azure Active Directory."

Click on "Users" and then "New user."

Fill in the required information to create a new user.

Make sure to assign a username and password for the user.

Note down the username (user principal name) and password for future

reference.

9

Assign the user appropriate permissions to the Azure SQL DB:

In the Azure portal, go to the Azure SQL DB resource.

Click on "Access control (IAM)" in the left-hand menu.

Click on "Add" and then "Add role assignment."

Select the appropriate role (e.g., "Contributor" or "SQL Server Contributor").

In the "Select" field, search and select the user you created in the previous

step.

Click on "Save" to assign the role to the user.

Configure Azure SQL DB for Azure AD authentication:

10

In the Azure portal, go to the Azure SQL DB resource.

Click on "Firewalls and virtual networks" in the left-hand menu.

Ensure that "Allow Azure services and resources to access this server" is set

to "Yes" to allow access from the App Service.

Click on "Active Directory admin" in the left-hand menu.

Click on "Set admin" and select the user you created in step 2 as the admin.

Click on "Save" to set the admin.

Modify the connection string in your Flask application:

Remove the existing username and password variables from your code.

Add a new variable for the Azure AD tenant ID at the beginning of your code:

python

Copy code

tenant_id = '<your-azure-ad-tenant-id>'

Modify the connection string in the cnxn initialization to include the

Authentication=ActiveDirectoryPassword parameter:

python

Copy code

cnxn =

pyodbc.connect(f'DRIVER={driver};SERVER={server};DATABASE={database};

UID={username}@{tenant_id};Authentication=ActiveDirectoryPassword')

STEP 4: DOCKER BUILD

Docker with Azure: Docker with Azure enables you to run containerized

applications on the Azure platform. It provides a flexible and scalable

environment for deploying and managing containers, allowing you to easily

package your applications with their dependencies and run them consistently

across different environments. Docker with Azure simplifies the deployment

and management of containerized applications in the cloud

11

We can use docker build -t imagename

Here is the code for docker file

And than after successful build :

We can tag and push the image to docker hub:

STEP 5: further the collected data can be used for visualizing the data using

Power BI :

12

Challenges Faced:

• Azure Configuration: Setting up and configuring Azure services,

understanding authentication methods and security considerations.

• Dependencies and Packages: Managing dependencies, resolving

version conflicts, and ensuring compatibility between packages.

• Integration and Communication: Integrating components, establishing

secure communication channels.

• Scalability and Performance: Handling concurrent visitors, optimizing

queries, and managing resource allocation.

• Security and Privacy: Safeguarding visitor data, ensuring secure

authentication, and complying with privacy regulations.

Business Benefits:

• Enhanced Customer Experience: Improved customer satisfaction by

providing personalized welcome messages and tracking visitor details

for better engagement and analysis.

• Efficient Visitor Management: Streamlined visitor registration process,

eliminating manual paperwork, and enabling easy access to visitor

information.

• Data Analysis and Insights: Leveraging visitor data for analyzing

patterns, identifying trends, and making informed business decisions

for optimizing operations.

• Versatile Application Usage: Applicable across various industries like

malls, hospitals, and restaurants, catering to diverse reception needs

and enhancing brand image.

 – By Sahil Shaikh
 Senior Developer

